Abstract
The effectiveness of a machine learning model is impacted by the data representation used. Consequently, it is crucial to investigate robust representations for efficient machine learning methods. In this paper, we explore the link between data representations and model performance for inference tasks on spatial networks. We argue that representations which explicitly encode the relations between spatial entities would improve model performance. Specifically, we consider homogeneous and heterogeneous representations of spatial networks. We recognise that the expressive nature of the heterogeneous representation may benefit spatial networks and could improve model performance on certain tasks. Thus, we carry out an empirical study using Graph Neural Network models for two inference tasks on spatial networks. Our results demonstrate that heterogeneous representations improves model performance for down-stream inference tasks on spatial networks.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献