Developing a Long Short-Term Memory-Based Model for Forecasting the Daily Energy Consumption of Heating, Ventilation, and Air Conditioning Systems in Buildings

Author:

Mendoza-Pittí LuisORCID,Calderón-Gómez HuriviadesORCID,Gómez-Pulido José ManuelORCID,Vargas-Lombardo MiguelORCID,Castillo-Sequera José LuisORCID,de Blas Clara SimonORCID

Abstract

Forecasting the energy consumption of heating, ventilating, and air conditioning systems is important for the energy efficiency and sustainability of buildings. In fact, conventional models present limitations in these systems due to their complexity and unpredictability. To overcome this, the long short-term memory-based model is employed in this work. Our objective is to develop and evaluate a model to forecast the daily energy consumption of heating, ventilating, and air conditioning systems in buildings. For this purpose, we apply a comprehensive methodology that allows us to obtain a robust, generalizable, and reliable model by tuning different parameters. The results show that the proposed model achieves a significant improvement in the coefficient of variation of root mean square error of 9.5% compared to that proposed by international agencies. We conclude that these results provide an encouraging outlook for its implementation as an intelligent service for decision making, capable of overcoming the problems of other noise-sensitive models affected by data variations and disturbances without the need for expert knowledge in the domain.

Funder

“Smart Energy” Campus of International Excellence

SENACYT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling of Automated Store Energy Consumption;Energies;2023-12-08

2. A Review of Data-Driven Building Energy Prediction;Buildings;2023-02-15

3. Improving Predictions of Long Sequences by Hyperparameter Tuning;2022 10th International Scientific Conference on Computer Science (COMSCI);2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3