Radon Levels of Water Sources in the Southwest Coastal Region of Peninsular Malaysia

Author:

Ismail Noor Fadilla,Hashim SuhairulORCID,Sanusi Mohamad Syazwan Mohd,Abdul Rahman Ahmad TaufekORCID,Bradley David Andrew

Abstract

Across populations, the dominating source of public exposure to radiation is radon gas. In the present study, we aimed at determining the concentration of radon in water sources from the southwest coastal region of Peninsular Malaysia. A total of 27 water samples were taken from various water sources which included groundwater, as well as hot spring, lake, river, seawater, and tap water; the radon concentrations were measured using a RAD7 portable radon detector. The radon concentrations ranged from 0.07 ± 0.12 to 187 ± 12 Bq l−1, with an average of 21 ± 12 Bq l−1. The highest concentration was found in hot spring water, with an average concentration of 99 ± 6 Bq l−1, while the lowest concentration was found in tap water, with an average concentration of 1.95 ± 0.61 Bq l−1. The average concentrations of radon for all categories of sampled water were below the 100 Bq l−1 WHO guidance level for safe drinking water. According to the ICRP effective dose conversion factor and UNSCEAR (2000), the total effective dose from the summation of inhaled and imbibed water was calculated from the aqueous radon concentrations, with an average effective dose of 4.45 µSv y−1, well within the WHO safe drinking water guideline value of 100 µSv per year. The results of this study could support the efforts of authorities and regulators who are responsible for controlling and strategizing to ensure public safety against radon exposures.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3