Creating Welsh Language Word Embeddings

Author:

Corcoran PadraigORCID,Palmer Geraint,Arman Laura,Knight DawnORCID,Spasić IrenaORCID

Abstract

Word embeddings are representations of words in a vector space that models semantic relationships between words by means of distance and direction. In this study, we adapted two existing methods, word2vec and fastText, to automatically learn Welsh word embeddings taking into account syntactic and morphological idiosyncrasies of this language. These methods exploit the principles of distributional semantics and, therefore, require a large corpus to be trained on. However, Welsh is a minoritised language, hence significantly less Welsh language data are publicly available in comparison to English. Consequently, assembling a sufficiently large text corpus is not a straightforward endeavour. Nonetheless, we compiled a corpus of 92,963,671 words from 11 sources, which represents the largest corpus of Welsh. The relative complexity of Welsh punctuation made the tokenisation of this corpus relatively challenging as punctuation could not be used for boundary detection. We considered several tokenisation methods including one designed specifically for Welsh. To account for rich inflection, we used a method for learning word embeddings that is based on subwords and, therefore, can more effectively relate different surface forms during the training phase. We conducted both qualitative and quantitative evaluation of the resulting word embeddings, which outperformed previously described word embeddings in Welsh as part of larger study including 157 languages. Our study was the first to focus specifically on Welsh word embeddings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference57 articles.

1. Recent Trends in Deep Learning Based Natural Language Processing [Review Article]

2. Corpws Cenedlaethol Cymraeg Cyfoes (Corcencc) https://github.com/CorCenCC

3. A Theory of Language and Information: A Mathematical Approach;Harris,1991

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3