Wearable Haptic Device for Stiffness Rendering of Virtual Objects in Augmented Reality

Author:

Lee Yongseok,Lee Somang,Lee Dongjun

Abstract

We propose a novel wearable haptic device that can provide kinesthetic haptic feedback for stiffness rendering of virtual objects in augmented reality (AR). Rendering stiffness of objects using haptic feedback is crucial for realistic finger-based object manipulation, yet challenging particularly in AR due to the co-presence of a real hand, haptic device, and rendered AR objects in the scenes. By adopting passive actuation with a tendon-based transmission mechanism, the proposed haptic device can generate kinesthetic feedback strong enough for immersive manipulation and prevention of inter-penetration in a small-form-factor, while maximizing the wearability and minimizing the occlusion in AR usage. A selective locking module is adopted in the device to allow for the rendering of the elasticity of objects. We perform an experimental study of two-finger grasping to verify the efficacy of the proposed haptic device for finger-based manipulation in AR. We also quantitatively compare/articulate the effects of different types of feedbacks across haptic and visual sense (i.e., kinesthetic haptic feedback, vibrotactile haptic feedback, and visuo-haptic feedback) for stiffness rendering of virtual objects in AR for the first time.

Funder

National Research Foundation of Korea

Institute of Information & communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Effects of Augmented Reality on the Performance of Teleoperated Industrial Assembly Tasks in a Robotic Embodiment

2. Current state of virtual reality simulation in robotic surgery training: a review

3. Control based on brain-computer interface technology for video-gaming with virtual reality techniques;Paszkiel;J. Autom. Mob. Robot. Intell. Syst.,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3