A Novel Unsupervised Computational Method for Ventricular and Supraventricular Origin Beats Classification

Author:

Casas Manuel M.,Avitia Roberto L.ORCID,Cardenas-Haro Jose AntonioORCID,Kalita Jugal,Torres-Reyes Francisco J.,Reyna Marco A.ORCID,Bravo-Zanoguera Miguel E.ORCID

Abstract

Arrhythmias are the most common events tracked by a physician. The need for continuous monitoring of such events in the ECG has opened the opportunity for automatic detection. Intra- and inter-patient paradigms are the two approaches currently followed by the scientific community. The intra-patient approach seems to resolve the problem with a high classification percentage but requires a physician to label key samples. The inter-patient makes use of historic data of different patients to build a general classifier, but the inherent variability in the ECG’s signal among patients leads to lower classification percentages compared to the intra-patient approach. In this work, we propose a new unsupervised algorithm that adapts to every patient using the heart rate and morphological features of the ECG beats to classify beats between supraventricular origin and ventricular origin. The results of our work in terms of F-score are 0.88, 0.89, and 0.93 for the ventricular origin beats for three popular ECG databases, and around 0.99 for the supraventricular origin for the same databases, comparable to supervised approaches presented in other works. This paper presents a new path to make use of ECG data to classify heartbeats without the assistance of a physician despite the needed improvements.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3