Abstract
Arrhythmias are the most common events tracked by a physician. The need for continuous monitoring of such events in the ECG has opened the opportunity for automatic detection. Intra- and inter-patient paradigms are the two approaches currently followed by the scientific community. The intra-patient approach seems to resolve the problem with a high classification percentage but requires a physician to label key samples. The inter-patient makes use of historic data of different patients to build a general classifier, but the inherent variability in the ECG’s signal among patients leads to lower classification percentages compared to the intra-patient approach. In this work, we propose a new unsupervised algorithm that adapts to every patient using the heart rate and morphological features of the ECG beats to classify beats between supraventricular origin and ventricular origin. The results of our work in terms of F-score are 0.88, 0.89, and 0.93 for the ventricular origin beats for three popular ECG databases, and around 0.99 for the supraventricular origin for the same databases, comparable to supervised approaches presented in other works. This paper presents a new path to make use of ECG data to classify heartbeats without the assistance of a physician despite the needed improvements.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献