Seismic and Energy Performance Evaluation of Large-Scale Curtain Walls Subjected to Displacement Control Fasteners

Author:

Lee Heonseok,Oh Myunghwan,Seo Junwon,Kim Woosuk

Abstract

Glass façade curtain walls in buildings is the façade system of choice in modern architecture of mid- to high-rise buildings. This study investigates the seismic and thermal insulation performance of curtain wall systems through structural analysis using the finite element method (FEM) and LBNL Window&Therm insulation analysis. The aim was to optimize the capability of the curtain wall module system and the fastener element technology to respond to displacement and vibration caused by dynamic seismic waves. Using the structural analysis of the optimization process, a curtain wall system capable of withstanding earthquake waves of 0.4 Hz, displacement of ±150 mm or more, and capable of responding to three-axis (X, Y, and Z-axis) dynamic earthquakes, was fabricated. Then, a curtain wall system that satisfies not only the evaluation of seismic performance, but also the desired airtightness, watertightness, wind pressure, and insulation, which are essential requirements for field applications, was verified through an experiment. Based on this study, it is expected that a curtain wall system capable of responding to three-axis dynamic seismic waves can be applied to mid- and high-rise buildings to prevent secondary damage in the event of an earthquake.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3