A Study on a Prediction Model of E-Bike Expansion Degree at Irregular Signalized Intersections

Author:

Tan Ting,Ma Jianxiao,Yang Zhen,Zhu Mengyue,Zong Chenhong,Li Hao

Abstract

The deviations of straight-going traffic at irregular signalized intersections lead to obvious expansion characteristics of e-bikes. This situation increases the possibility of collisions between motor vehicles and e-bikes. In order to study the change of expansion degree of straight-going e-bike at irregular signalized intersections, the video trajectory extraction technology is used to obtain relevant data of e-bikes during green light release periods at irregular signalized intersections. In addition, we combined the flow and spacing characteristics of e-bikes and used a clustering method to analyze the release stage and release groups. Therefore, the Group 1 of e-bikes in the early green light release was determined to be the main research object of expansion degree. According to the static and dynamic factors, a prediction model for the expansion degree of straight-going e-bikes at irregular signalized intersections was established based on the beetle antennae search–back propagation (BAS-BP) neural network model. Finally, the evaluation indexes were compared and analyzed before and after the beetle antennae search (BAS) algorithm optimization. The results showed that the BAS-BP neural network prediction model was better than that of the back propagation (BP) neural network. The results could provide a theoretical reference for improving the efficiency of mixed traffic flow at irregular signalized intersections.

Funder

Transportation Science and Technology Project of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3