Inferring Long-Term Demand of Newly Established Stations for Expansion Areas in Bike Sharing System

Author:

Hsieh Hsun-PingORCID,Lin Fandel,Jiang Jiawei,Kuo Tzu-Ying,Chang Yu-En

Abstract

Research on flourishing public bike-sharing systems has been widely discussed in recent years. In these studies, many existing works focus on accurately predicting individual stations in a short time. This work, therefore, aims to predict long-term bike rental/drop-off demands at given bike station locations in the expansion areas. The real-world bike stations are mainly built-in batches for expansion areas. To address the problem, we propose LDA (Long-Term Demand Advisor), a framework to estimate the long-term characteristics of newly established stations. In LDA, several engineering strategies are proposed to extract discriminative and representative features for long-term demands. Moreover, for original and newly established stations, we propose several feature extraction methods and an algorithm to model the correlations between urban dynamics and long-term demands. Our work is the first to address the long-term demand of new stations, providing the government with a tool to pre-evaluate the bike flow of new stations before deployment; this can avoid wasting resources such as personnel expense or budget. We evaluate real-world data from New York City’s bike-sharing system, and show that our LDA framework outperforms baseline approaches.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system

2. Ride On! Mobility Business Models for the Sharing Economy

3. The Sharing Economy Isn’t About Sharing at All;Eckhardt;Harv. Bus. Rev.,2015

4. Collaborating and Connecting: The Emergence of the Sharing Economy;Schor;Handb. Res. Sustain. Consum.,2015

5. Optimizing the level of service quality of a bike-sharing system

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of public bike-sharing systems on mobility patterns: Generating or replacing trips?;International Journal of Sustainable Transportation;2023-01-02

2. A Systematic Literature Review on Machine Learning in Shared Mobility;IEEE Open Journal of Intelligent Transportation Systems;2023

3. Advances on Smart Cities and Smart Buildings;Applied Sciences;2022-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3