SVIoT: A Secure Visual-IoT Framework for Smart Healthcare

Author:

Kaw Javaid A.,Gull Solihah,Parah Shabir A.

Abstract

The advancement of the Internet of Things (IoT) has transfigured the overlay of the physical world by superimposing digital information in various sectors, including smart cities, industry, healthcare, etc. Among the various shared information, visual data are an insensible part of smart cities, especially in healthcare. As a result, visual-IoT research is gathering momentum. In visual-IoT, visual sensors, such as cameras, collect critical multimedia information about industries, healthcare, shopping, autonomous vehicles, crowd management, etc. In healthcare, patient-related data are captured and then transmitted via insecure transmission lines. The security of this data are of paramount importance. Besides the fact that visual data requires a large bandwidth, the gap between communication and computation is an additional challenge for visual IoT system development. In this paper, we present SVIoT, a Secure Visual-IoT framework, which addresses the issues of both data security and resource constraints in IoT-based healthcare. This was achieved by proposing a novel reversible data hiding (RDH) scheme based on One Dimensional Neighborhood Mean Interpolation (ODNMI). The use of ODNMI reduces the computational complexity and storage/bandwidth requirements by 50 percent. We upscaled the original image from M × N to M ± 2N, dissimilar to conventional interpolation methods, wherein images are upscaled to 2M × 2N. We made use of an innovative mechanism, Left Data Shifting (LDS), before embedding data in the cover image. Before embedding the data, we encrypted it using an AES-128 encryption algorithm to offer additional security. The use of LDS ensures better perceptual quality at a relatively high payload. We achieved an average PSNR of 43 dB for a payload of 1.5 bpp (bits per pixel). In addition, we embedded a fragile watermark in the cover image to ensure authentication of the received content.

Funder

Department of Science and Technology Government of India

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3