Anti-Screenshot Watermarking Algorithm for Archival Image Based on Deep Learning Model

Author:

Gu Wei1ORCID,Chang Ching-Chun2,Bai Yu3,Fan Yunyuan3,Tao Liang1,Li Li3

Affiliation:

1. School of Computer Science and Technology, Anhui University, Hefei 230039, China

2. Department of Computer Science, University of Warwick, Coventry CV47AL, UK

3. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Over recent years, there are an increasing number of incidents in which archival images have been ripped. Leak tracking is one of the key problems for anti-screenshot digital watermarking of archival images. Most of the existing algorithms suffer from low detection rate of watermark, because the archival images have a single texture. In this paper, we propose an anti-screenshot watermarking algorithm for archival images based on Deep Learning Model (DLM). At present, screenshot image watermarking algorithms based on DLM can resist screenshot attacks. However, if these algorithms are applied on archival images, the bit error rate (BER) of the image watermark will increase dramatically. Archival images are ubiquitous, so in order to improve the robustness of archival image anti-screenshot, we propose a screenshot DLM “ScreenNet”. It aims to enhance the background and enrich the texture with style transfer. Firstly, a preprocessing process based on style transfer is added before the insertion of an archival image into the encoder to reduce the influence of the screenshot process of the cover image. Secondly, the ripped images are usually moiréd, so we generate a database of ripped archival images with moiréd by means of moiréd networks. Finally, the watermark information is encoded/decoded through the improved ScreenNet model using the ripped archive database as the noise layer. The experiments prove that the proposed algorithm is able to resist anti-screenshot attacks and achieves the ability to detect watermark information to leak the trace of ripped images.

Funder

National Archives Administration of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3