Microbial Assisted Hexavalent Chromium Removal in Bioelectrochemical Systems

Author:

Beretta GabrieleORCID,Daghio Matteo,Espinoza Tofalos AnnaORCID,Franzetti AndreaORCID,Mastorgio Andrea FilippoORCID,Saponaro SabrinaORCID,Sezenna ElenaORCID

Abstract

Groundwater is the environmental matrix that is most frequently affected by anthropogenic hexavalent chromium contamination. Due to its carcinogenicity, Cr(VI) has to be removed, using environmental-friendly and economically sustainable remediation technologies. BioElectrochemical Systems (BESs), applied to bioremediation, thereby offering a promising alternative to traditional bioremediation techniques, without affecting the natural groundwater conditions. Some bacterial families are capable of oxidizing and/or reducing a solid electrode obtaining an energetic advantage for their own growth. In the present study, we assessed the possibility of stimulating bioelectrochemical reduction of Cr(VI) in a dual-chamber polarized system using an electrode as the sole energy source. To develop an electroactive microbial community three electrodes were, at first, inserted into the anodic compartment of a dual-chamber microbial fuel cell, and inoculated with sludge from an anaerobic digester. After a period of acclimation, one electrode was transferred into a polarized system and it was fixed at −0.3 V (versus standard hydrogen electrode, SHE), to promote the reduction of 1000 µg Cr(VI) L−1. A second electrode, served for the set-up of an open circuit control, operated in parallel. Cr(VI) dissolved concentration was analysed at the initial, during the experiment and final time by spectrophotometric method. Initial and final microbial characterization of the communities enriched in polarized system and open circuit control was performed by 16S rRNA gene sequencing. The bioelectrode set at −0.3 V showed high Cr(VI) removal efficiency (up to 93%) and about 150 µg L−1 day−1 removal rate. Similar efficiency was observed in the open circuit (OC) even at about half rate. Whereas, purely electrochemical reduction, limited to 35%, due to neutral operating conditions. These results suggest that bioelectrochemical Cr(VI) removal by polarized electrode offers a promising new and sustainable approach to the treatment of groundwater Cr(VI) plumes, deserving further research.

Funder

Fondazione Cariplo

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference74 articles.

1. MICROBIAL LEACHING OF CHROMIUM FROM SOLIDIFIED WASTE FORMS – A KINETIC STUDY

2. Scoping Documents for 2018 Deliverable Report D 4.2—Input for Cd and Cr(VI);Tschersich,2018

3. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent

4. Sedimentation of tannery wastewater

5. An Overview on Research Trends in Remediation of Chromium;Madhavi;Res. J. Recent Sci. Res.,2013

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3