Abstract
As the frequency of more intense storms increases and concerns grow regarding the use of dams and levees, the focus has shifted to natural infrastructure (NI) for flood mitigation. NI has shown some success at small scales; however, little work has been carried out at the large watershed scale during extreme events. Three NI measures (afforestation, water farming, and flood control wetlands) were evaluated in the Neuse River Basin of eastern North Carolina. Detailed geospatial opportunity and hydrologic modeling of the measures were conducted in three subwatersheds of the basin and results were extrapolated to other subwatersheds. NI opportunity was greater and associated modeled peak flow reductions were larger for two subwatersheds located in the lower portion of the basin, where there is less development and flatter land slopes. Peak flow reductions varied spatially depending on the type and placement of NI combined with the hydraulic and morphologic characteristics of the stream network. Extrapolation of reductions to other subwatersheds produced a 4.4% reduction in peak flow for the 100 year storm at the outlet of the river basin in Kinston as a result of water farming on 1.1%, wetlands controlling runoff from 5.7%, and afforestation of 8.4% of the river basin.
Funder
NC Policy Collaboratory, UNC-Chapel Hill
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference49 articles.
1. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century;Jha,2021
2. Global Perspectives on Loss of Human Life Caused by Floods
3. Projecting Changes in Expected Annual Damages From Riverine Flooding in the United States
4. Global drivers of future river flood risk
5. Flood Risk Reduction From Natural and Nature-Based Features: Army Corps of Engineers Authorities;Carter,2020
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献