Performance Assessment of Different Precipitation Databases (Gridded Analyses and Reanalyses) for the New Brazilian Agricultural Frontier: SEALBA

Author:

Silva Ewerton Hallan de Lima,Silva Fabrício Daniel dos SantosORCID,Junior Rosiberto Salustiano da Silva,Pinto David Duarte CavalcanteORCID,Costa Rafaela Lisboa,Gomes Heliofábio Barros,Júnior Jório Bezerra CabralORCID,de Freitas Ismael Guidson Farias,Herdies Dirceu LuísORCID

Abstract

Since the early 2000s, Brazil has been one of the world’s leading grain producers, with agribusiness accounting for around 28% of the Brazilian GDP in 2021. Substantial investments in research, coupled with the expansion of arable areas, owed to the advent of new agriculture frontiers, led the country to become the world’s greatest producer of soybean. One of the newest agricultural frontiers to be emerging in Brazil is the one known as SEALBA, an acronym that refers to the three Brazilian states whose areas it is comprised of—Sergipe, Alagoas, and Bahia—all located in the Northeast region of the country. It is an extensive area with a favorable climate for the production of grains, including soybeans, with a rainy season that takes place in autumn/winter, unlike the Brazilian regions that are currently the main producers of these kinds of crops, in which the rainfall regime has the wet period concentrated in spring/summer. Considering that precipitation is the main determinant climatic factor for crops, the scarcity of weather stations in the SEALBA region poses an obstacle to an accurate evaluation of the actual feasibility of the region to a given crop. Therefore, the aim of this work was to carry out an assessment of the performance of four different precipitation databases of alternative sources to observations: two from gridded analyses, MERGE and CHIRPS, and the other two from ECMWF reanalyses, ERA5, and ERA5Land, and by comparing them to observational records from stations along the region. The analysis was based on a comparison with data from seven weather stations located in SEALBA, in the period 2001–2020, through three dexterity indices: the mean absolute error (MAE), the root mean squared errors (RMSE), and the coefficient of Pearson’s correlation (r), showing that the gridded analyzes performed better than the reanalyses, with MERGE showing the highest correlations and the lowest errors (global average r between stations of 0.96, followed by CHIRPS with 0.85, ERA5Land with 0.83, and ERA5 with 0.70; average MAE 14.3 mm, followed by CHIRPS with 21.3 mm, ERA5Land with 42.1 mm and ERA5 with 50.1 mm; average RMSE between stations of 24.6 mm, followed by CHIRPS with 50.8 mm, ERA5Land with 62.3 mm and ERA5 with 71.4 mm). Since all databases provide up-to-date data, our findings indicate that, for any research that needs a complete daily precipitation dataset for the SEALBA region, preference should be given to use the data in the following order of priority: MERGE, CHIRPS, ERA5Land, and ERA5.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference91 articles.

1. O Desenvolvimento da Agricultura no Brasil;Schuh,1971

2. Contribuição da Embrapa para o Desenvolvimento da Agricultura no Brasil;Alves,2013

3. Papel da Embrapa no desenvolvimento do agronegócio;Alves,2013

4. O Mundo Rural no Brasil do Século 21: A Formação de Um Novo Padrão Agrário e Agrícola,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3