Foreign Object Debris Detection on Wireless Electric Vehicle Charging Pad Using Machine Learning Approach

Author:

Rajamanickam Narayanamoorthi1ORCID,Abraham Dominic Savio1,Alroobaea Roobaea2ORCID,Abdelfattah Waleed Mohammed3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India

2. Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3. College of Engineering, University of Business and Technology, Jeddah 23435, Saudi Arabia

Abstract

Foreign object debris (FOD) includes any unwanted and unintentional material lying on the charging lane or parking lots, posing a risk to the wireless charging system, the vehicle, or the people inside. FOD in an Electric Vehicle (EV) wireless charging system can cause problems, including decreased charging efficiency, safety risks, charging system damage, communication issues, and health risks. To address this problem, this paper proposes the deep learning object detection network approach of using YOLOv4 (You Only Look Once), which is a single-shot detector. Additionally, for real-time implementation, YOLOv4-Tiny is suggested, which is a compressed version of YOLOv4 designed for devices with low computational power. YOLOv4-Tiny enables faster inferences and facilitates the deployment of FOD detectors on edge devices. The algorithm is trained using the FOD dataset, consisting of images of common debris on runways or taxiways. Furthermore, utilizing the concept of transfer learning, the last few layers of the pre-trained YOLOv4 model are modified using the COCO (Common Objects in Context) dataset to transfer features to the new network and retrain the model on the FOD dataset. The results obtained using this YOLOv4 model yielded a precision rate of 99.05%, while the results from YOLOv4-Tiny achieved a precision rate of 97.74%, with an average inference time of 150 ms under the ambient light and weather conditions.

Funder

Taif University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3