Research on Gas Drainage Pipeline Leakage Detection and Localization Based on the Pressure Gradient Method

Author:

Zhang Huijie123,Shen Maoliang23ORCID,Huo Zhonggang123,Zhang Yibin2,Shu Longyong23,Li Yang23

Affiliation:

1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China

2. China Coal Research Institute, Beijing 100013, China

3. State Key Laboratory of Coal Mine Disaster Prevention and Control, Beijing 100013, China

Abstract

Pipeline leakage seriously threatens the efficient and safe gas drainage in coal mines. To achieve the accurate detection and localization of gas drainage pipeline leakages, this study proposes a gas drainage pipeline leakage detection and localization approach based on the pressure gradient method. Firstly, the basic law of gas flow in the drainage pipeline was analyzed, and a pipeline network resistance correction formula was deduced based on the pressure gradient method. Then, a drainage pipeline model was established based on the realizable k-ε turbulence model, and the pressure and flow velocity distribution during pipeline leakage under different leakage degrees, leakage locations, and pipeline negative pressures were simulated and analyzed, thus verifying the feasibility of the pipeline leakage detection and localization method. It is concluded that the positioning errors of pipeline leakage points under different leakage degrees, different leakage positions, and different pipeline negative pressures were 0.88~1.08%, 0.88~1.49%, and 0.68~0.88%, respectively. Finally, field tests were conducted in the highly located drainage roadway 8421 of the Fifth Mine of Yangquan Coal Industry Group to verify the accuracy of the proposed pipeline leakage detection and localization method, and the relative error was about 8.2%. The results show that with increased pipeline leakage hole diameters, elevated pipeline negative pressures, and closer leakage positions to the pipeline center, the relative localization error was smaller, the localization accuracy was higher, and the stability was greater. The research results could lay the foundation for the fault diagnosis and localization of coal mine gas drainage pipeline networks and provide technical support for safe and efficient coal mine gas drainage.

Funder

China Coal Research Institute Technology Innovation Fund

Technology Innovation and Entrepreneurship Foundation of Tiandi Science & Technology Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3