Application of Magnesium Oxide Media for Remineralization and Removal of Divalent Metals in Drinking Water Treatment: A Review

Author:

Szymoniak Lena,Claveau-Mallet DominiqueORCID,Haddad Maryam,Barbeau BenoitORCID

Abstract

The post-treatment of soft and desalinated waters is an integral step in the production of quality drinking water. Remineralization is therefore often essential in order to stabilize the effluent for distribution and to attain mineral levels that fulfill aesthetic and health goals. According to the World Health Organization, magnesium (Mg2+) is a nutrient essential to human health. This review summarizes the effectiveness of magnesium oxide (MgO) media for soft water remineralization, as well as its potential for divalent metal removal (e.g., Mn, Cu, and Zn), which is of particular interest in small or residential applications. We present MgO sources, properties, and dissolution mechanisms. Water treatment applications are then reviewed, and the available design models are critically appraised in regard to remineralization and contaminant removal processes. In addition, we review the process operation challenges and costs. Finally, we discuss the use of MgO in combination with calcite and address the technical advantages and limitations compared to other available methods.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference109 articles.

1. Water Processing: Residential, Commercial, Light-Industrial;McGowan,2000

2. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—pH. (Catalogue No H144-28/2016E-PDF),2015

3. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First,2017

4. State-of-the-art review on post-treatment technologies

5. Limestone Bed Contactors for Control of Corrosion at Small Water Utilities;Letterman,1987

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3