EcoDetect-YOLO: A Lightweight, High-Generalization Methodology for Real-Time Detection of Domestic Waste Exposure in Intricate Environmental Landscapes

Author:

Liu Shenlin1,Chen Ruihan12ORCID,Ye Minhua3,Luo Jiawei1,Yang Derong1,Dai Ming1

Affiliation:

1. School of Mathematics and Computer, Guangdong Ocean University, Zhanjiang 524008, China

2. Artificial Intelligence Research Institute, International (Macau) Institute of Academic Research, Macau 999078, China

3. College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

In response to the challenges of accurate identification and localization of garbage in intricate urban street environments, this paper proposes EcoDetect-YOLO, a garbage exposure detection algorithm based on the YOLOv5s framework, utilizing an intricate environment waste exposure detection dataset constructed in this study. Initially, a convolutional block attention module (CBAM) is integrated between the second level of the feature pyramid etwork (P2) and the third level of the feature pyramid network (P3) layers to optimize the extraction of relevant garbage features while mitigating background noise. Subsequently, a P2 small-target detection head enhances the model’s efficacy in identifying small garbage targets. Lastly, a bidirectional feature pyramid network (BiFPN) is introduced to strengthen the model’s capability for deep feature fusion. Experimental results demonstrate EcoDetect-YOLO’s adaptability to urban environments and its superior small-target detection capabilities, effectively recognizing nine types of garbage, such as paper and plastic trash. Compared to the baseline YOLOv5s model, EcoDetect-YOLO achieved a 4.7% increase in mAP0.5, reaching 58.1%, with a compact model size of 15.7 MB and an FPS of 39.36. Notably, even in the presence of strong noise, the model maintained a mAP0.5 exceeding 50%, underscoring its robustness. In summary, EcoDetect-YOLO, as proposed in this paper, boasts high precision, efficiency, and compactness, rendering it suitable for deployment on mobile devices for real-time detection and management of urban garbage exposure, thereby advancing urban automation governance and digital economic development.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangdong Ocean University

Guangdong Provincial Science and Technology Innovation Strategy

National College Students Innovation and Entrepreneurship Training Program

Guangdong Ocean University Undergraduate Innovation Team

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3