SCAE—Stacked Convolutional Autoencoder for Fault Diagnosis of a Hydraulic Piston Pump with Limited Data Samples

Author:

Eraliev Oybek1,Lee Kwang-Hee2ORCID,Lee Chul-Hee2ORCID

Affiliation:

1. Department of Future Vehicle Engineering, Inha University, 100 Inharo, Mitchuholgu, Incheon 22212, Republic of Korea

2. Department of Mechanical Engineering, Inha University, 100 Inharo, Mitchuholgu, Incheon 22212, Republic of Korea

Abstract

Deep learning (DL) models require enormous amounts of data to produce reliable diagnosis results. The superiority of DL models over traditional machine learning (ML) methods in terms of feature extraction, feature dimension reduction, and diagnosis performance has been shown in various studies of fault diagnosis systems. However, data acquisition can sometimes be compromised by sensor issues, resulting in limited data samples. In this study, we propose a novel DL model based on a stacked convolutional autoencoder (SCAE) to address the challenge of limited data. The innovation of the SCAE model lies in its ability to enhance gradient information flow and extract richer hierarchical features, leading to superior diagnostic performance even with limited and noisy data samples. This article describes the development of a fault diagnosis method for a hydraulic piston pump using time–frequency visual pattern recognition. The proposed SCAE model has been evaluated on limited data samples of a hydraulic piston pump. The findings of the experiment demonstrate that the suggested approach can achieve excellent diagnostic performance with over 99.5% accuracy. Additionally, the SCAE model has outperformed traditional DL models such as deep neural networks (DNN), standard stacked sparse autoencoders (SSAE), and convolutional neural networks (CNN) in terms of diagnosis performance. Furthermore, the proposed model demonstrates robust performance under noisy data conditions, further highlighting its effectiveness and reliability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3