LiDAR-Based 3D Temporal Object Detection via Motion-Aware LiDAR Feature Fusion

Author:

Park Gyuhee1ORCID,Koh Junho1,Kim Jisong1ORCID,Moon Jun1ORCID,Choi Jun Won2

Affiliation:

1. Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea

2. Department of Electrical and Computer Engineering, College of Liberal Studies, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Recently, the growing demand for autonomous driving in the industry has led to a lot of interest in 3D object detection, resulting in many excellent 3D object detection algorithms. However, most 3D object detectors focus only on a single set of LiDAR points, ignoring their potential ability to improve performance by leveraging the information provided by the consecutive set of LIDAR points. In this paper, we propose a novel 3D object detection method called temporal motion-aware 3D object detection (TM3DOD), which utilizes temporal LiDAR data. In the proposed TM3DOD method, we aggregate LiDAR voxels over time and the current BEV features by generating motion features using consecutive BEV feature maps. First, we present the temporal voxel encoder (TVE), which generates voxel representations by capturing the temporal relationships among the point sets within a voxel. Next, we design a motion-aware feature aggregation network (MFANet), which aims to enhance the current BEV feature representation by quantifying the temporal variation between two consecutive BEV feature maps. By analyzing the differences and changes in the BEV feature maps over time, MFANet captures motion information and integrates it into the current feature representation, enabling more robust and accurate detection of 3D objects. Experimental evaluations on the nuScenes benchmark dataset demonstrate that the proposed TM3DOD method achieved significant improvements in 3D detection performance compared with the baseline methods. Additionally, our method achieved comparable performance to state-of-the-art approaches.

Funder

National Research Foundation (NRF) funded by the Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3