Latent Space Representations for Marker-Less Realtime Hand–Eye Calibration

Author:

Martínez-Franco Juan Camilo1,Rojas-Álvarez Ariel1,Tabares Alejandra1ORCID,Álvarez-Martínez David1,Marín-Moreno César Augusto2ORCID

Affiliation:

1. Department of Industrial Engineering, Universidad de los Andes, Bogota 111711, Colombia

2. Integra S.A., Pereira 660003, Colombia

Abstract

Marker-less hand–eye calibration permits the acquisition of an accurate transformation between an optical sensor and a robot in unstructured environments. Single monocular cameras, despite their low cost and modest computation requirements, present difficulties for this purpose due to their incomplete correspondence of projected coordinates. In this work, we introduce a hand–eye calibration procedure based on the rotation representations inferred by an augmented autoencoder neural network. Learning-based models that attempt to directly regress the spatial transform of objects such as the links of robotic manipulators perform poorly in the orientation domain, but this can be overcome through the analysis of the latent space vectors constructed in the autoencoding process. This technique is computationally inexpensive and can be run in real time in markedly varied lighting and occlusion conditions. To evaluate the procedure, we use a color-depth camera and perform a registration step between the predicted and the captured point clouds to measure translation and orientation errors and compare the results to a baseline based on traditional checkerboard markers.

Funder

Integra S.A

OR4

Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas

Universidad de los Andes

Publisher

MDPI AG

Reference27 articles.

1. Lambrecht, J. (2019, January 1–3). Robust few-shot pose estimation of articulated robots using monocular cameras and deep-learning-based keypoint detection. Proceedings of the 7th International Conference on Robot Intelligence Technology and Applications, Daejeon, Republic of Korea.

2. A hand-eye calibration algorithm of binocular stereo vision based on multi-pixel 3D geometric centroid relocalization;Fu;J. Adv. Manuf. Sci. Technol.,2022

3. Sefercik, B.C., and Akgun, B. (2023, January 6–9). Learning markerless robot-depth camera calibration and end-effector pose estimation. Proceedings of the Conference on Robot Learning, Atlanta, GA, USA.

4. Đalić, V., Jovanović, V., and Marić, P. (2024). Submillimeter-Accurate Markerless Hand–Eye Calibration Based on a Robot’s Flange Features. Sensors, 24.

5. Rodriguez, C.H., Camacho, G., Álvarez, D., Cardenas, K.V., Rojas, D.M., and Grimaldos, A. (2018, January 17–19). 3D object pose estimation for robotic packing applications. Proceedings of the Applied Computer Sciences in Engineering: 5th Workshop on Engineering Applications, Medellín, Colombia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3