Abstract
Healthy adults and neurological patients show unique mobility patterns over the course of their lifespan and disease. Quantifying these mobility patterns could support diagnosing, tracking disease progression and measuring response to treatment. This quantification can be done with wearable technology, such as inertial measurement units (IMUs). Before IMUs can be used to quantify mobility, algorithms need to be developed and validated with age and disease-specific datasets. This study proposes a protocol for a dataset that can be used to develop and validate IMU-based mobility algorithms for healthy adults (18–60 years), healthy older adults (>60 years), and patients with Parkinson’s disease, multiple sclerosis, a symptomatic stroke and chronic low back pain. All participants will be measured simultaneously with IMUs and a 3D optical motion capture system while performing standardized mobility tasks and non-standardized activities of daily living. Specific clinical scales and questionnaires will be collected. This study aims at building the largest dataset for the development and validation of IMU-based mobility algorithms for healthy adults and neurological patients. It is anticipated to provide this dataset for further research use and collaboration, with the ultimate goal to bring IMU-based mobility algorithms as quickly as possible into clinical trials and clinical routine.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献