Abstract
Damping circuits are installed inside the converter valve to limit commutation overshoots. They have significant effects on the valve’s turn-off performances, which should be carefully considered in parameter design. First, the calculation models for the turn-off process are discussed, including the conventional low frequency model and the broadband model. Then, it is found that high-frequency equipment parameters have significant effects on the transient valve voltage, which means that the conventional analytical methods based on low-frequency models is not suitable for damping circuit parameter design. The relationships between the turn-off performances and damping circuit parameters have also been analyzed in detail with the broadband model. To achieve better economic efficiency, this paper proposes a novel method for damping circuit parameter optimization, which combines the electromagnetic transient (EMT) calculation and the numerical optimization. Last, the case study is carried out based on a practical ±1100 kV ultra-high-voltage direct-current (UHVDC) transmission project, which proves the reliability and flexibility of the proposed method.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development and Validation of a Smart Architecture for Thyristor Valves;IEEE Journal of Emerging and Selected Topics in Power Electronics;2023-08