Abstract
In this work, we develop the general theory for analyzing the thermodynamic consistency of the Richardson–Duhmann model for vacuum thermionic energy converters. In addition to the electron fluxes from emitter to collector and vice versa, we calculate the energy and entropy fluxes associated to them. The calculation of the entropy fluxes is what allows us to conclude that the model is consistent by verifying that both at the emitter and at the collector the entropy generation rate is positive. In the process, we review the Richardson–Duhmann model in order to assure that the assumptions we make for calculating the energy and entropy fluxes are consistent. We also generalize the Richardson–Duhmann model in order to consider Fermi–Dirac statistics.
Funder
Horizon 2020 Framework Programme
Comunidad de Madrid
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献