Abstract
To investigate the influence of CO2 partial pressure on efficiency of CH4-CO2 swap from natural gas hydrates (NGHs), the replacement of CH4 from natural gas hydrate (NGH) is carried out with simulated Integrated Gasification Combined Cycle (IGCC) syngas under different pressures, and the gas chromatography (GC), in-situ Raman, and powder X-ray diffraction (PXRD) are employed to analyze the hydrate compositions and hydrate structures. The results show that with the P-T (pressure and temperature) condition shifting from that above the hydrate equilibrium curve of IGCC syngas to that below the hydrate equilibrium curve of IGCC syngas, the rate of CH4 recovery drastically rises from 32% to 71%. The presence of water can be clearly observed when P-T condition is above the hydrate equilibrium curve of IGCC syngas; however the presence of water only occurs at the interface between gas phase and hydrate phase. No H2 is found to present in the final hydrate phase at the end of process of CH4-CO2 swap with IGCC syngas.
Funder
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
National Natural Science Fund
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献