Author:
Sung Lee-Yong,Ahn Jonghoon
Abstract
Advanced thermal control technologies have been continuously developed to complement conventional models and algorithms to improve their performance regarding control accuracy and energy efficiency. This study analyses the strengths and weaknesses of simultaneous controls for the amount of air and its temperature by use of on-demand and predictive control strategies responding to two different outdoor conditions. The framework performs the comparative analyses of an on-demand model, which reacts immediately to indoor conditions, and a predictive model, which provides reference signals derived from data learned. Two models are combined to make a comparison of how much more efficient the combined model operates than each model when abnormal situations occur. As a result, when the two models are combined, its efficiency improves from 20.0% to 33.6% for indoor thermal dissatisfaction and from 13.0% to 44.5% for energy use, respectively. This result implies that in addition to creating new algorithms to cope with any abnormal situation, combining existing models can also be a resource-saving approach.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献