Comparative Analyses of Energy Efficiency between on-Demand and Predictive Controls for Buildings’ Indoor Thermal Environment

Author:

Sung Lee-Yong,Ahn Jonghoon

Abstract

Advanced thermal control technologies have been continuously developed to complement conventional models and algorithms to improve their performance regarding control accuracy and energy efficiency. This study analyses the strengths and weaknesses of simultaneous controls for the amount of air and its temperature by use of on-demand and predictive control strategies responding to two different outdoor conditions. The framework performs the comparative analyses of an on-demand model, which reacts immediately to indoor conditions, and a predictive model, which provides reference signals derived from data learned. Two models are combined to make a comparison of how much more efficient the combined model operates than each model when abnormal situations occur. As a result, when the two models are combined, its efficiency improves from 20.0% to 33.6% for indoor thermal dissatisfaction and from 13.0% to 44.5% for energy use, respectively. This result implies that in addition to creating new algorithms to cope with any abnormal situation, combining existing models can also be a resource-saving approach.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3