A Bayesian Motivated Two-Sample Test Based on Kernel Density Estimates

Author:

Merchant Naveed,Hart Jeffrey D.

Abstract

A new nonparametric test of equality of two densities is investigated. The test statistic is an average of log-Bayes factors, each of which is constructed from a kernel density estimate. Prior densities for the bandwidths of the kernel estimates are required, and it is shown how to choose priors so that the log-Bayes factors can be calculated exactly. Critical values of the test statistic are determined by a permutation distribution, conditional on the data. An attractive property of the methodology is that a critical value of 0 leads to a test for which both type I and II error probabilities tend to 0 as sample sizes tend to ∞. Existing results on Kullback–Leibler loss of kernel estimates are crucial to obtaining these asymptotic results, and also imply that the proposed test works best with heavy-tailed kernels. Finite sample characteristics of the test are studied via simulation, and extensions to multivariate data are straightforward, as illustrated by an application to bivariate connectionist data.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference8 articles.

1. Use of cross-validation Bayes factors to test equality of two densities;Merchant;arXiv,2020

2. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations;Bowman,1997

3. Non-Parametric Kernel Density Estimation-Based Permutation Test: Implementation and Comparisons;Baranzano;Ph.D. Thesis,2011

4. Frequentist nonparametric goodness-of-fit tests via marginal likelihood ratios

5. On Kullback-Leibler Loss and Density Estimation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3