Regime Map of the Effective Medium Approximation Modelling of Micro-Rough Surfaces in Ellipsometry

Author:

Huang Meijiao1,Guo Liang1,Jiang Fengyi1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Abstract

In this work, we discuss the precision of the effective medium approximation (EMA) model in the data analysis of spectroscopic ellipsometry (SE) for solid materials with micro-rough surfaces by drawing the regime map. The SE parameters ψ (amplitude ratio) and Δ (phase difference) of the EMA model were solved by rigorous coupled-wave analysis. The electromagnetic response of the actual surfaces with micro roughness was simulated by the finite-difference time-domain method, which was validated by the experimental results. The regime maps associated with the SE parameters and optical constants n (refractive index) and k (extinction coefficient) of the EMA model were drawn by a comparison of the actual values with the model values. We find that using EMA to model micro-rough surfaces with high absorption can result in a higher precision of the amplitude ratio and extinction coefficient. The precisions of ψ, Δ, n and k increase as the relative roughness σ/λ (σ: the root mean square roughness, λ: the incident wavelength) decreases. The precision of ψ has an influence on the precision of k and the precision of Δ affects the precision of n. Changing σ alone has little effect on the regime maps of the relative errors of SE parameters and optical constants. A superior advantage of drawing the regime map is that it enables the clear determination as to whether EMA is able to model the rough surfaces or not.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3