Hybrid Model for Short-Term Water Demand Forecasting Based on Error Correction Using Chaotic Time Series

Author:

Wu Shan,Han Hongquan,Hou BenweiORCID,Diao KegongORCID

Abstract

Short-term water demand forecasting plays an important role in smart management and real-time simulation of water distribution systems (WDSs). This paper proposes a hybrid model for the short-term forecasting in the horizon of one day with 15 min time steps, which improves the forecasting accuracy by adding an error correction module to the initial forecasting model. The initial forecasting model is firstly established based on the least square support vector machine (LSSVM), the errors time series obtained by comparing the observed values and the initial forecasted values is next transformed into chaotic time series, and then the error correction model is established by the LSSVM method to forecast errors at the next time step. The hybrid model is tested on three real-world district metering areas (DMAs) in Beijing, China, with different demand patterns. The results show that, with the help of the error correction module, the hybrid model reduced the mean absolute percentage error (MAPE) of forecasted demand from (5.64%, 4.06%, 5.84%) to (4.84%, 3.15%, 3.47%) for the three DMAs, compared with using LSSVM without error correction. Therefore, the proposed hybrid model provides a better solution for short-term water demand forecasting on the tested cases.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3