Abstract
Biological nitrogen removal (BNR) in centralized and decentralized wastewater treatment systems is assumed to be driven by the same microbial processes and to have communities with a similar composition and structure. There is, however, little information to support these assumptions, which may impact the effectiveness of decentralized systems. We used high-throughput sequencing to compare the structure and composition of the nitrifying and denitrifying bacterial communities of nine onsite wastewater treatment systems (OWTS) and one wastewater treatment plant (WTP) by targeting the genes coding for ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ). The amoA diversity was similar between the WTP and OWTS, but nosZ diversity was generally higher for the WTP. Beta diversity analyses showed the WTP and OWTS promoted distinct amoA and nosZ communities, although there is a core group of N-transforming bacteria common across scales of BNR treatment. Our results suggest that advanced N-removal OWTS have microbial communities that are sufficiently distinct from those of WTP with BNR, which may warrant different management approaches.
Funder
U.S. Environmental Protection Agency
U.S. Department of Agriculture
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献