Cyber-Physical System for Environmental Monitoring Based on Deep Learning

Author:

Monedero ÍñigoORCID,Barbancho JulioORCID,Márquez Rafael,Beltrán Juan F.ORCID

Abstract

Cyber-physical systems (CPS) constitute a promising paradigm that could fit various applications. Monitoring based on the Internet of Things (IoT) has become a research area with new challenges in which to extract valuable information. This paper proposes a deep learning classification sound system for execution over CPS. This system is based on convolutional neural networks (CNNs) and is focused on the different types of vocalization of two species of anurans. CNNs, in conjunction with the use of mel-spectrograms for sounds, are shown to be an adequate tool for the classification of environmental sounds. The classification results obtained are excellent (97.53% overall accuracy) and can be considered a very promising use of the system for classifying other biological acoustic targets as well as analyzing biodiversity indices in the natural environment. The paper concludes by observing that the execution of this type of CNN, involving low-cost and reduced computing resources, are feasible for monitoring extensive natural areas. The use of CPS enables flexible and dynamic configuration and deployment of new CNN updates over remote IoT nodes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3