Abstract
Cyber-physical systems (CPS) constitute a promising paradigm that could fit various applications. Monitoring based on the Internet of Things (IoT) has become a research area with new challenges in which to extract valuable information. This paper proposes a deep learning classification sound system for execution over CPS. This system is based on convolutional neural networks (CNNs) and is focused on the different types of vocalization of two species of anurans. CNNs, in conjunction with the use of mel-spectrograms for sounds, are shown to be an adequate tool for the classification of environmental sounds. The classification results obtained are excellent (97.53% overall accuracy) and can be considered a very promising use of the system for classifying other biological acoustic targets as well as analyzing biodiversity indices in the natural environment. The paper concludes by observing that the execution of this type of CNN, involving low-cost and reduced computing resources, are feasible for monitoring extensive natural areas. The use of CPS enables flexible and dynamic configuration and deployment of new CNN updates over remote IoT nodes.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献