Performance Signature of the Best Candidate-Graded Bandgap Materials for Solar Cells with Steady-State Conversion Efficiency

Author:

El-Hageen Hazem M.123ORCID,Zaki Rashed Ahmed Nabih4ORCID,Albalawi Hani12,Alhartomi Mohammed A.1ORCID,Alfaifi Yousef H.5,Alsubaie Madhi Tarikham1,Mead Mohamed A.6

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, University of Tabuk, Tabuk 47913, Saudi Arabia

2. Renewable Energy and Energy Efficiency Center (REEEC), University of Tabuk, Tabuk 47913, Saudi Arabia

3. Egyptian Atomic Energy Authority, Cairo 13759, Egypt

4. Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32951, Egypt

5. Faculty of Computers and Information Technology, University of Tabuk, Tabuk 47913, Saudi Arabia

6. Faculty of Computers and Informatics, Suez Canal University, Ismalia 41522, Egypt

Abstract

This is a comprehensive research endeavor focused on enhancing the efficiency of the proposed solar cell design. The integration of the simulation techniques, judicious material selection, and meticulous performance metrics showcase a methodical approach toward creating a solar cell capable of achieving high efficiency across a wide spectrum of light in the AM 1.5 G1 sun solar cell illumination spectrum. Having said this, many researchers are still working on the efficiency potential—based on external radiative efficiency (ERE), open-circuit voltage loss, and fill factor loss—of high-efficiency solar cells. The solar cell is built on aluminum-doped zinc oxide (ZnO) as a transparent conductive oxide layer; aluminum nitride (AlN) as the window layer (emitter); an SWCNT layer as the absorber layer; gallium phosphide (GaP) as the contact layer; and silicon as the substrate. The proposed solar cell transmission, reflection, and absorption relative to the variations in wavelength band spectrum are studied. The conduction and valence band energy diagrams of the solar cell design structure are simulated against the layer thickness variations for the suggested solar cell structure. Short-circuit current density and maximum power variations are clarified versus the bias voltage. Light current density is simulated versus the bias voltage (J/V characteristics curve) of the suggested solar cell design structure. The carrier generation–recombination rate is also simulated by the COMSOL simulation program versus the layer thickness of the suggested solar cell structure. The solar cell circuit design has a fill factor (FF) value of 74.31% and a power conversion efficiency value of 29.91%.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

University of Tabuk

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3