A Policy Gradient Algorithm to Alleviate the Multi-Agent Value Overestimation Problem in Complex Environments

Author:

Yang Yang12,Li Jiang12,Hou Jinyong3,Wang Ye12,Zhao Huadong12

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Unit 32802 of the Chinese People’s Liberation Army, Beijing 100191, China

Abstract

Multi-agent reinforcement learning excels at addressing group intelligent decision-making problems involving sequential decision-making. In particular, in complex, high-dimensional state and action spaces, it imposes higher demands on the reliability, stability, and adaptability of decision algorithms. The reinforcement learning algorithm based on the multi-agent deep strategy gradient incorporates a function approximation method using discriminant networks. However, this can lead to estimation errors when agents evaluate action values, thereby reducing model reliability and stability and resulting in challenging convergence. With the increasing complexity of the environment, there is a decline in the quality of experience collected by the experience playback pool, resulting in low efficiency of the sampling stage and difficulties in algorithm convergence. To address these challenges, we propose an innovative approach called the empirical clustering layer-based multi-agent dual dueling policy gradient (ECL-MAD3PG) algorithm. Experimental results demonstrate that our ECL-MAD3PG algorithm outperforms other methods in various complex environments, demonstrating a remarkable 9.1% improvement in mission completion compared to MADDPG within the context of complex UAV cooperative combat scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

1. Preface of special issue on collaborative control and optimization of multi-agent systems;Yang;Control Decis.,2023

2. A multi-agent resource allocation strategy for collaborative perception of unmanned aerial vehicle cluster;Wang;J. Internet Things,2023

3. Multi-depot vehicle routing problem based on deep reinforcement learning;Wag;Control Decis.,2022

4. Application of deep reinforcement learning in optimal operation of power distribution networks;Hu;Power Syst. Its Autom.,2023

5. The Application of deep reinforcement learning algorithm in intelligent military decision-making;Zhu;Comput. Eng. Appl.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3