Study on Dynamic and Static Mechanical Properties of Copper-Plated Steel-Fiber-Reinforced Self-Compacting Concrete

Author:

Qi Juan1ORCID,Liu Aonan23,Su Peng4,Mu Chaomin2

Affiliation:

1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

3. Yankuang Energy Group Company Co., Ltd., Jining 272169, China

4. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

Abstract

The mechanical properties and impact resistance of conventional self-compacting concrete (SCC) need to be further improved. In order to explore the dynamic and static mechanical properties of copper-plated steel-fiber-reinforced self-compacting concrete (CPSFRSCC), the static mechanical properties and dynamic mechanical properties of CPSFRSCC with a different volume fraction of copper-plated steel fiber (CPSF) are tested, and a numerical experiment is carried out to analyze the experimental results. The results show that the mechanical properties of self-compacting concrete (SCC) can be effectively improved by adding CPSF, especially for the tensile mechanical properties. The static tensile strength of CPSFRSCC shows a trend that increases with the increase in the volume fraction of CPSF and then reaches the maximum when the volume fraction of CPSF is 3%. The dynamic tensile strength of CPSFRSCC shows a trend that increases first and then decrease with the increase in the volume fraction of CPSF, and then reaches the maximum when the volume fraction of CPSF is 2%. The results of the numerical simulation show that the failure morphology of CPSFRSCC is closely related to the content of CPSF; with the increase in the volume fraction of CPSF, the fracture morphology of the specimen gradually evolves from complete fracture to incomplete fracture.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3