A Modified Bond-Associated Non-Ordinary State-Based Peridynamic Model for Impact Problems of Quasi-Brittle Materials

Author:

Zhang Jing12,Liu Yaxun12,Lai Xin12ORCID,Liu Lisheng12ORCID,Mei Hai12,Liu Xiang12

Affiliation:

1. Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China

2. Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China

Abstract

In this work, we have developed a novel bond-associated non-ordinary state-based peridynamic (BA-NOSB PD) model for the numerical modeling and prediction of the impact response and fracture damage of quasi-brittle materials. First, the improved Johnson-Holmquist (JH2) constitutive relationship is implemented in the framework of BA-NOSB PD theory to describe the nonlinear material response, which also helps to eliminate the zero-energy mode. Afterwards, the volumetric strain in the equation of state is redefined by the introduction of the bond-associated deformation gradient, which can effectively improve the stability and accuracy of the material model. Then, a new general bond-breaking criterion is proposed in the BA-NOSB PD model, which is capable of covering various failure modes of quasi-brittle materials, including the tensile-shear failure that is not commonly considered in the literature. Subsequently, a practical bond-breaking strategy and its computational implementation are presented and discussed by means of energy convergence. Finally, the proposed model is verified by two benchmark numerical examples and demonstrated by the numerical simulation of edge-on impact and normal impact experiments on ceramics. The comparison between our results and references shows good capability and stability for impact problems of quasi-brittle materials. Numerical oscillations and unphysical deformation modes are effectively eliminated, showing strong robustness and bright prospects for relevant applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3