Affiliation:
1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
Abstract
Using the volume expansion generated by the hydration of the MgO expansive agent to compensate for the shrinkage deformation of concrete is considered to be an effective measure to prevent concrete shrinkage and cracking. Existing studies have mainly focused on the effect of the MgO expansive agent on the deformation of concrete under constant temperature conditions, but mass concrete in practical engineering experiences a temperature change process. Obviously, the experience obtained under constant temperature conditions makes it difficult to accurately guide the selection of the MgO expansive agent under actual engineering conditions. Based on the C50 concrete project, this paper mainly investigates the effect of curing conditions on the hydration of MgO in cement paste under actual variable temperature conditions by simulating the actual temperature change course of C50 concrete so as to provide a reference for the selection of the MgO expansive agent in engineering practice. The results show that temperature was the main factor affecting the hydration of MgO under variable temperature curing conditions, and the increase in the temperature could obviously promote the hydration of MgO in cement paste, while the change in the curing methods and cementitious system had an effect on the hydration of MgO, though this effect was not obvious.
Funder
the Open Fund project of National Laboratory for High Performance Civil Engineering Materials
the Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
General Materials Science