Effects of Surface Properties of Fiber on Interface Properties of Carbon Fiber/Epoxy Resin and Its Graphene Oxide Modified Hybrid Composites

Author:

Bai Weihua1,Liu Wenjun1,Li Weidong2,Lin Zewen1,Qiu Hong1,Hu Xiaolan1

Affiliation:

1. College of Materials, Xiamen University, Xiamen 361005, China

2. National Key Laboratory of Advanced Composites, AVIC Composite Technology Center, AVIC Composite Corporation Ltd., Beijing 101300, China

Abstract

In the present study, surface properties of three types of carbon fibers (CCF300, CCM40J, and CCF800H) on the interface properties of carbon fiber/epoxy resin (CF/EP) were analyzed. The composites are further modified by graphene oxide (GO) to obtain GO/CF/EP hybrid composites. Meanwhile, the effect of the surface properties of CFs and the additive graphene oxide on the interlaminar shear properties and dynamic thermomechanical properties of GO/CF/EP hybrid composites are also analyzed. The results show that the higher surface oxygen-carbon ratio of carbon fiber (CCF300) has a positive effect on improving the glass transition temperature (Tg) of the CF/EP composites. The Tg of CCF300/EP is 184.4 °C, while the Tg of CCM40J/EP and CCF800/EP are only 177.1 °C and 177.4 °C, respectively. Furthermore, deeper and more dense grooves on the fiber surface (CCF800H and CCM40J) are more conducive to improving the interlaminar shear performance of the CF/EP composites. The interlaminar shear strength (ILSS) of CCF300/EP is 59.7 MPa, and that of CCM40J/EP and CCF800H/EP are 80.1 MPa and 83.5 MPa, respectively. For the GO/CF/EP hybrid composites, graphene oxide with abundant oxygen-containing groups is beneficial to improve the interfacial interaction. Graphene oxide can significantly improve the glass transition temperature and interlamellar shear strength of GO/CCF300/EP composites fabricated by CCF300 with a higher surface oxygen-carbon ratio. For the CCM40J and CCF800H with lower surface oxygen-carbon ratio, graphene oxide has a better modification effect on the glass transition temperature and interlamellar shear strength of GO/CCM40J/EP composites fabricated by CCM40J with deeper and finer surface grooves. Regardless of the type of carbon fiber, the GO/CF/EP hybrid composites with 0.1% graphene oxide have the optimized interlaminar shear strength, and the GO/CF/EP hybrid composites with 0.5% graphene oxide have the maximum glass transition temperature.

Funder

National Natural Science Foundation of China;the Basic Scientific Research Program for National Defense

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3