Electronic Structures of Penta-SiC2 and g-SiC3 Nanoribbons: A First-Principles Study

Author:

Liu Zhichao1,Liu Xiaobiao2,Wang Junru1

Affiliation:

1. School of Physics and Electronic Informations, Yantai University, Yantai 264005, China

2. School of Sciences, Henan Agricultural University, Zhengzhou 450002, China

Abstract

The dimensions of nanoribbons have a significant impact on their material properties. In the fields of optoelectronics and spintronics, one-dimensional nanoribbons exhibit distinct advantages due to their low-dimensional and quantum restrictions. Novel structures can be formed by combining silicon and carbon at different stoichiometric ratios. Using density functional theory, we thoroughly explored the electronic structure properties of two kinds of silicon–carbon nanoribbons (penta-SiC2 and g-SiC3 nanoribbons) with different widths and edge conditions. Our study reveals that the electronic properties of penta-SiC2 and g-SiC3 nanoribbons are closely related to their width and orientation. Specifically, one type of penta-SiC2 nanoribbons exhibits antiferromagnetic semiconductor characteristics, two types of penta-SiC2 nanoribbons have moderate band gaps, and the band gap of armchair g-SiC3 nanoribbons oscillates in three dimensions with the width of the nanoribbon. Notably, zigzag g-SiC3 nanoribbons exhibit excellent conductivity, high theoretical capacity (1421 mA h g−1), moderate open circuit voltage (0.27 V), and low diffusion barriers (0.09 eV), making them a promising candidate for high storage capacity electrode material in lithium-ion batteries. Our analysis provides a theoretical basis for exploring the potential of these nanoribbons in electronic and optoelectronic devices as well as high-performance batteries.

Funder

the Natural Science Foundation of Shandong Province

the Doctor Foundation of Yantai University

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3