An Analytical Investigation of Anomaly Detection Methods Based on Sequence to Sequence Model in Satellite Power Subsystem

Author:

Jin WeihuaORCID,Zhang Shijie,Sun Bo,Jin Pengli,Li Zhidong

Abstract

The satellite power subsystem is responsible for all power supply in a satellite, and is an important component of it. The system’s performance has a direct impact on the operations of other systems as well as the satellite’s lifespan. Sequence to sequence (seq2seq) learning has recently advanced, gaining even more power in evaluating complicated and large-scale data. The potential of the seq2seq model in detecting anomalies in the satellite power subsystem is investigated in this work. A seq2seq-based scheme is given, with a thorough comparison of different neural-network cell types and levels of data smoothness. Three specific approaches were created to evaluate the seq2seq model performance, taking into account the unsupervised learning mechanism. The findings reveal that a CNN-based seq2seq with attention model under suitable data-smoothing conditions has a better ability to detect anomalies in the satellite power subsystem.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detection for Agile Satellite Attitude Control System Using Hybrid Deep-Learning Technique;Journal of Aerospace Information Systems;2023-09-03

2. Electrical Power Subsystem of İMECE Satellite;2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST);2023-06-07

3. Machine Learning-Based Fault Diagnosis Approach for Geosynchronous Satellite Power Systems;2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST);2023-06-07

4. PCA-LSTM Anomaly Detection and Prediction Method Based on Time Series Power Data;2022 China Automation Congress (CAC);2022-11-25

5. TNT Loss: A Technical and Nontechnical Generative Cooperative Energy Loss Detection System;Sensors;2022-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3