Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO2 Drying

Author:

Guastaferro Mariangela,Baldino LuciaORCID,Reverchon Ernesto,Cardea StefanoORCID

Abstract

In this work, the effect of two processes, i.e., freeze-drying and supercritical CO2 (SC-CO2) drying, on the final morphology of agarose-based porous structures, was investigated. The agarose concentration in water was varied from 1 wt% up to 8 wt%. Agarose cryogels were prepared by freeze-drying using two cooling rates: 2.5 °C/min and 0.1 °C/min. A more uniform macroporous structure and a decrease in average pore size were achieved when a fast cooling rate was adopted. When a slower cooling rate was performed instead, cryogels were characterized by a macroporous and heterogenous structure at all of the values of the biopolymer concentration investigated. SC-CO2 drying led to the production of aerogels characterized by a mesoporous structure, with a specific surface area up to 170 m2/g. Moreover, agarose-based aerogels were solvent-free, and no thermal changes were detected in the samples after processing.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3