Kinetics of the Release of Nicotinamide Absorbed on Partially Neutralized Poly(acrylic-co-methacrylic acid) Xerogel under the Conditions of Simultaneous Microwave Heating and Cooling

Author:

Jovanovic Jelena D.,Adnadjevic Borivoj K.

Abstract

The kinetics of release of nicotinamide (NIAM) that was absorbed on partially neutralized poly(acrylic-co-methacrylic) (PAM) xerogel/hydrogel, under the conditions of simultaneous microwave heating and cooling (SMHC) were examined. The kinetics curves of NIAM release into an aqueous solution at temperatures of 308–323 K were recorded. By applying the model-fitting method (MFM), it was found that the kinetics of NIAM release can be modeled by a kinetic model of a first-order chemical reaction. The values of the release rate constants (kM) at different temperatures were calculated, and their values were found to be within the range 8.4 10−3 s −1−15.7 10−3 s−1. It has been established that the Arrhenius equation was valid even in the conditions of SMHC. The values of the kinetic parameters (activation energy (Ea) and pre-exponential factor (A) of the NIAM release process adsorbed on PAM xerogel/hydrogel were calculated as follows: Ea = 25.6 kJ/mol and ln (A/s−1) = 5.21. It has been proven that the higher value of the rate constant at SMHC in relation to CH is not a consequence of the overheating of the reaction system or the appearance of “hot-points”. The values of change of the enthalpy of activation (ΔH*) and the change of entropy of activation (ΔS*) were calculated as follows: ΔH* = +23.82 kJ/mol and ΔS* = −201.4 J/mol K. The calculated higher values of the kinetic parameters and thermodynamic parameters of activation are explained by the formation of a specific activated complex under SMHC, whose structure and degree of order are different than in the one formed under CH.

Funder

The Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3