Abstract
Recently, we reported the synthesis and characterization of a new dextran derivative obtained by grafting polyethylene glycol methacrylate to a polysaccharide backbone through a carbonate bond. This moiety was introduced because it allows for the fabrication, through a photo-induced crosslinking reaction, of biodegradable hydrogels particularly suitable for the release of high molecular weight molecules. Here, we investigate the influence of the oxyethylene chain length and the molecular weight of the starting dextran on the main properties of the polymeric solutions as well as those of the corresponding hydrogels. All synthesized polymeric derivatives were characterized by FTIR, NMR, and rheological analyses. The photo-crosslinking reaction of the polymers allowed us to obtain biodegradable networks tested for their mechanical properties, swelling, and degradation behavior. The results showed that both the oxyethylene chain length as well as the molecular weight of the starting dextran influenced swelling and degradation of the hydrogel network. As a consequence, the different behaviors in terms of swelling and degradability were able to affect the release of a large model molecule over time, making these matrices suitable candidates for the delivery of high molecular weight drug substances.
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献