The Influence of Monomer Structure on the Properties of Ionogels Obtained by Thiol–Ene Photopolymerization

Author:

Lewandowska AnetaORCID,Gajewski PiotrORCID,Szcześniak KatarzynaORCID,Marcinkowska AgnieszkaORCID

Abstract

The influence of ene and thiol monomer structure on the mechanical and electrochemical properties of thiol–ene polymeric ionogels were investigated. Ionogels were obtained in situ by thiol–ene photopolymerization of 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATT), 2,4,6-triallyloxy-1,3,5-triazine (TAT), diallyl phthalate (DAP), and glyoxal bis(diallyl acetal) (GBDA) used as enes and trimethylolpropane tris(3-mercaptopropionate) (TMPTP), pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), and pentaerythritol tetrakis(3-mercaptobutyrate) (PETMB) used as thiols in 70 wt.% of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImNTf2). The mechanical strength of ionogels was studied by puncture resistance and ionic conductivity by electrochemical impedance spectroscopy. The course of photopolymerization by photo-DSC method (differential scanning calorimetry) as well as characterization of compositions and its components (by IR and UV spectroscopy-Kamlet–Taft parameters) were also studied. The resulting ionogels were opaque, with phase separation, which resulted from the dispersion mechanism of polymerization. The mechanical and conductive properties of the obtained materials were found to be largely dependent on the monomer structure. Ionogels based on triazine monomers TAT and TATT were characterized by higher mechanical strength, while those based on aliphatic GBDA had the highest conductivity. These parameters are strongly related to the structure of the polymer matrix, which is in the form of connected spheres. The conductivity of ionogels was high, in the range of 3.5–5.1 mS∙cm−1.

Funder

National Science Center

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3