Abstract
The Cardioid (C) distribution is one of the most important models for modeling circular data. Although some of its structural properties have been derived, this distribution is not appropriate for asymmetry and multimodal phenomena in the circle, and then extensions are required. There are various general methods that can be used to produce circular distributions. This paper proposes four extensions of the C distribution based on the beta, Kumaraswamy, gamma, and Marshall–Olkin generators. We obtain a unique linear representation of their densities and some mathematical properties. Inference procedures for the parameters are also investigated. We perform two applications on real data, where the new models are compared to the C distribution and one of its extensions.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献