Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines

Author:

Berry Lauren N.ORCID,Helwig Nathaniel E.ORCID

Abstract

Functional data analysis techniques, such as penalized splines, have become common tools used in a variety of applied research settings. Penalized spline estimators are frequently used in applied research to estimate unknown functions from noisy data. The success of these estimators depends on choosing a tuning parameter that provides the correct balance between fitting and smoothing the data. Several different smoothing parameter selection methods have been proposed for choosing a reasonable tuning parameter. The proposed methods generally fall into one of three categories: cross-validation methods, information theoretic methods, or maximum likelihood methods. Despite the well-known importance of selecting an ideal smoothing parameter, there is little agreement in the literature regarding which method(s) should be considered when analyzing real data. In this paper, we address this issue by exploring the practical performance of six popular tuning methods under a variety of simulated and real data situations. Our results reveal that maximum likelihood methods outperform the popular cross-validation methods in most situations—especially in the presence of correlated errors. Furthermore, our results reveal that the maximum likelihood methods perform well even when the errors are non-Gaussian and/or heteroscedastic. For real data applications, we recommend comparing results using cross-validation and maximum likelihood tuning methods, given that these methods tend to perform similarly (differently) when the model is correctly (incorrectly) specified.

Funder

National Institutes of Health

Publisher

MDPI AG

Reference56 articles.

1. Applied Functional Data Analysis;Ramsay,2002

2. Functional Data Analysis;Ramsay,2005

3. Functional Data Analysis with R and MATLAB;Ramsay,2009

4. Applications of functional data analysis: A systematic review

5. Functional Data Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3