A Comparative Study of Structural Deformation Test Based on Edge Detection and Digital Image Correlation

Author:

Tang Ruixiang1,Chen Wenbing1,Wu Yousong1,Xiong Hongbin1,Yan Banfu12

Affiliation:

1. School of Civil Engineering, Hunan University, Changsha 410082, China

2. College of Civil and Architectural Engineering, Guangxi University, Nanning 530004, China

Abstract

Digital image-correlation (DIC) algorithms rely heavily on the accuracy of the initial values provided by whole-pixel search algorithms for structural displacement monitoring. When the measured displacement is too large or exceeds the search domain, the calculation time and memory consumption of the DIC algorithm will increase greatly, and even fail to obtain the correct result. The paper introduced two edge-detection algorithms, Canny and Zernike moments in digital image-processing (DIP) technology, to perform geometric fitting and sub-pixel positioning on the specific pattern target pasted on the measurement position, and to obtain the structural displacement according to the change of the target position before and after deformation. This paper compared the difference between edge detection and DIC in accuracy and calculation speed through numerical simulation, laboratory, and field tests. The study demonstrated that the structural displacement test based on edge detection is slightly inferior to the DIC algorithm in terms of accuracy and stability. As the search domain of the DIC algorithm becomes larger, its calculation speed decreases sharply, and is obviously slower than the Canny and Zernike moment algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3