Using Battery-Powered Suspended Monorails in Underground Hard Coal Mines to Improve Working Conditions in the Roadway

Author:

Szlązak Nikodem,Korzec MarekORCID,Cheng JianweiORCID

Abstract

Transporting materials and mine staff is a vital link necessary to the production process in underground mines. Deteriorating climatic conditions, mainly due to the increasingly deep mining and the usage of machines, force us to look for solutions to improve the underground mine environmental situation. Another essential factor responsible for deteriorating working conditions is harmful substances and exhaust fumes emitted from diesel engines. Supplying the workplaces with air quantity exceeding requirements such as the minimum velocity of air movement or gas and climatic conditions will allow for maintaining the gas concentration at the appropriate level. One possible way to solve the problems mentioned above is to replace suspended monorails powered by internal combustion engines with new solutions of electrically battery-powered monorails. Electric monorails are not yet widely used in mines; nevertheless, they have many advantages. This article analyzes the exhaust gas parameters from monorail locomotives operating in a hard coal mine and determines the required airflow to maintain permissible concentrations of harmful gases. It also focuses on a comparative analysis of climatic conditions in the development heading, considering the roadway’s functioning with and without using diesel or electric monorail. The study consists of the methodology for predicting climate conditions. Based on the performed analysis, it was shown that using electric monorails could significantly improve working conditions.

Funder

AGH University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3