Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application

Author:

Gordeeva Larisa,Aristov YuriORCID

Abstract

In recent years, growing energy demands and environmental pollution caused by the extensive use of fossil fuels have inspired considerable research interest in adsorptive heat transformation (AHT). This technology offers effective utilization of low-grade solar or waste thermal energy for cooling and heating with low environmental impact. Increasing the AHT power is a keystone for further development and dissemination of this emerging technology. The AHT power is mainly determined by ad/desorption dynamics, which is significantly hindered by slow heat transfer between the adsorbent and heat exchanger. Shaping the adsorbent bed as a coating on the heat exchanger surface is considered an effective route to enhance heat transfer and increase the AHT power. In this review, the technology of adsorbent coating for AHT is comprehensively surveyed, including coating synthesis, adsorption dynamics, and use in real AHT devices. The advantages of the coated bed configuration are considered, and its challenges are outlined. Finally, recommendations for better organization of the coating’s structure for rational control of the relative contributions of heat and mass transfer are considered.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference120 articles.

1. BP Statistical Review of World Energy 2022, 71st edition

2. Chapter Seven—Heating and Cooling Policies;IEA-RETD,2012

3. Adsorption Refrigeration Technology: Theory and Application;Wang,2014

4. Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?

5. Adsorption heat pumps for heating applications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3