A Hybrid Model for GRU Ultra-Short-Term Wind Speed Prediction Based on Tsfresh and Sparse PCA

Author:

Wang YaqiORCID,Gui Renzhou

Abstract

Wind power is a popular renewable energy source, and the accurate prediction of wind speed plays an important role in improving the power generation efficiency of wind turbines and ensuring the normal operation of wind power equipment. Due to the instability and randomness of wind speed, it is difficult to achieve accurate prediction by traditional prediction methods. To improve the power generation efficiency of wind turbines and realize the predictability of wind speed, a hybrid wind speed prediction model based on GRUs (gated recurrent units) was constructed in this paper based on a deep neural network and feature extraction method. The hybrid model feature extraction module was implemented based on a combination of Tsfresh (a python package for time series feature extraction) and sparse PCA (sparse principal component analysis), and the network structure and other hyperparameters of the GRU module were determined through experiments. The model was validated using actual wind measurement data from a wind farm on the west coast of the United States. The results showed that the proposed model had less computational time and higher computational accuracy than the SARIMAX (seasonal auto-regressive integrated moving average with exogenous factors) and LSTM (long short-term memory) models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. A Review of Modern Wind Turbine Technology

2. Investigation for causes of poor power quality in grid connected wind energy-A review;Bhadane;Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference,2012

3. Power Quality in Grid connected Renewable Energy Systems: Role of Custom Power Devices

4. Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p-Power Error Loss

5. Best practice in short-term forecasting—A users guide;Giebel;Proceedings of the CD-Rom Proceedings European Wind Energy Conference,2007

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3