Abstract
Wind power is a popular renewable energy source, and the accurate prediction of wind speed plays an important role in improving the power generation efficiency of wind turbines and ensuring the normal operation of wind power equipment. Due to the instability and randomness of wind speed, it is difficult to achieve accurate prediction by traditional prediction methods. To improve the power generation efficiency of wind turbines and realize the predictability of wind speed, a hybrid wind speed prediction model based on GRUs (gated recurrent units) was constructed in this paper based on a deep neural network and feature extraction method. The hybrid model feature extraction module was implemented based on a combination of Tsfresh (a python package for time series feature extraction) and sparse PCA (sparse principal component analysis), and the network structure and other hyperparameters of the GRU module were determined through experiments. The model was validated using actual wind measurement data from a wind farm on the west coast of the United States. The results showed that the proposed model had less computational time and higher computational accuracy than the SARIMAX (seasonal auto-regressive integrated moving average with exogenous factors) and LSTM (long short-term memory) models.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference28 articles.
1. A Review of Modern Wind Turbine Technology
2. Investigation for causes of poor power quality in grid connected wind energy-A review;Bhadane;Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference,2012
3. Power Quality in Grid connected Renewable Energy Systems: Role of Custom Power Devices
4. Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p-Power Error Loss
5. Best practice in short-term forecasting—A users guide;Giebel;Proceedings of the CD-Rom Proceedings European Wind Energy Conference,2007
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献