Experimental Study on Shear Characteristics of Structural Plane with Different Fluctuation Characteristics

Author:

Guo YintongORCID,Ying Qiqi,Wang Duocai,Zhang Hong,Huang Famu,Guo Haitao,Hou Lei,Xu Mingnan,Liu Hejuan,Xia Debin

Abstract

With the increasing scale and depth of underground engineering, the geological environment that engineering is faced with is becoming more complex. As the weak position of rock mass, the structural surface has a particularly great influence on the mechanical characteristics of the rock mass. In order to obtain the shear strength characteristic of the structural plane and analyze the influence of morphological parameters such as the undulating angle and bulge degree on shearing, taking medium-low permeability tight sandstone as the research object, four kinds of structural plane samples with different undulating angles (10, 20, 30 and 40°) were prepared with a Python and high-precision engraving machine. Direct shear tests under different normal stresses (2, 4, 6 and 8 MPa) and shear rates (0.6, 1.2 and 2.4 mm/min) were performed, and the shear mechanical properties were analyzed. The structural surfaces before and after shearing were scanned using a high-precision three-dimensional scanner, so as to evaluate the roughness of the structural surface and determine the influence from various factors on the shear characteristics. The test results showed that for the structural plane with the same undulating angle, the peak shear stress increased approximately linearly with an increase in normal stress at a 0.6 mm/min shear rate and an increment speed of approximately 0.82, while the peak shear stress negatively correlated with the shear rate at a value of 4 MPa for normal stress. The larger the undulating angle was, the greater the influence of the shear rate (the shear stress decreased by 2.31 MPa at a 40° angle). When the normal stress and the shear rate were fixed, the peak shear stress corresponding to the structural surface gradually increased with the increase in the undulating angle, and the maximum increment was 5.04 MPa at 4 MPa normal stress and a 0.6 mm/min shear rate. An analysis of the morphological characteristics of the structural plane showed that when the undulating angle (40°) and the normal stress (6 and 8 MPa) were larger, the damage of the structural plane became more obvious, the shear point was closer to the tooth valley position, and the mechanical bite force and friction force of the structural plane were better utilized. When the shear rate was lower (0.6 mm/min), the friction characteristics of the shear surface were more visible, the shear was increasingly sufficient, and the corresponding shear strength was also greater.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3